If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+6k-6=0
a = 5; b = 6; c = -6;
Δ = b2-4ac
Δ = 62-4·5·(-6)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{39}}{2*5}=\frac{-6-2\sqrt{39}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{39}}{2*5}=\frac{-6+2\sqrt{39}}{10} $
| 3/6=9/7r | | r-51=219 | | 3x+38=9x+28 | | y-79=128 | | -5x+32-20x+48=180 | | 7+4x=159 | | m-33=192 | | s+8=45 | | 3x+38=9x+28 | | t-43=-42 | | j-53=228 | | 1.06-0.69x=0.79-0.24 | | 8/x=6/19 | | k-63=213 | | 13x+80,000=18x | | -4/7(x—1/4)=13 | | 20x-12.5x+62.5=270 | | 50+15x=85 | | x+9=7+9 | | 2/5=3/8q+1/6 | | 0.90x=4662 | | x+9=7+9=16 | | -2(x+1)=1/2(x-8) | | 3x+41/7+x+20/5=13 | | x-29=102 | | 7p^2+1=6p | | 5x6=6x | | 4b=22 | | (19+5x+1)/2=9x-3 | | a-31=123 | | 12x+19+22x+-9=180 | | 2x-6x+5+4x=-10x+5 |